Identification of systolic heart failure among patients presenting to the emergency department (ED) with acute dyspnea is challenging. The reasons for dyspnea are often multifactorial. A focused physical evaluation and diagnostic testing can lack sensitivity and specificity. The objective of this study was to assess the accuracy of an artificial intelligence-enabled ECG to identify patients presenting with dyspnea who have left ventricular systolic dysfunction (LVSD). A total of 1606 patients were included. Median time from ECG to echocardiogram was 1 day (Q1: 1, Q3: 2). The artificial intelligence-enabled ECG algorithm identified LVSD with an area under the receiver operating characteristic curve of 0.89 (95% CI, 0.86-0.91) and accuracy of 85.9%. Sensitivity, specificity, negative predictive value, and positive predictive value were 74%, 87%, 97%, and 40%, respectively. To identify an ejection fraction <50%, the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity were 0.85 (95% CI, 0.83-0.88), 86%, 63%, and 91%, respectively. NT-proBNP (N-terminal pro-B-type natriuretic peptide) alone at a cutoff of >800 identified LVSD with an area under the receiver operating characteristic curve of 0.80 (95% CI, 0.76-0.84). The ECG is an inexpensive, ubiquitous, painless test which can be quickly obtained in the ED. It effectively identifies LVSD in selected patients presenting to the ED with dyspnea when analyzed with artificial intelligence and outperforms NT-proBNP.
Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea
Published In:
Circulation: Arrhythmia and Electrophysiology
Authors:


